
django-data-watcher

Vinta Serviços e Soluções Tecnológicas LTDA

Sep 28, 2022

USER GUIDE

1 Installation 3
1.1 Requirements . 3

2 Getting Started 5
2.1 The Hooks . 5

2.1.1 Target . 5
2.1.2 MetaParams . 6

2.2 Create Your Watcher . 6
2.3 Available Mixins . 7

2.3.1 DeleteWatcherMixin . 7
2.3.2 CreateWatcherMixin . 7
2.3.3 UpdateWatcherMixin . 8
2.3.4 SaveWatcherMixin . 8

2.4 Decorate Your Model . 9
2.4.1 Using others than default django managers . 9

3 Tutorial 11
3.1 Migrating from Django Signals . 11

4 Indices and tables 15

i

ii

django-data-watcher

Django Data Watcher is a library that will make easier to create/mantain side-effects of data operations in your django
models.

It tries to fix some of Django Signals’ problems, being reusable, giving visibility of the side-effects of doing data
operations in a specific model, and also if some hook is triggered by a queryset operation it runs only once, giving you
responsability of dealing with the queryset instead running once for each affected instance.

It’s very practical to use and you can improve the readbility and performance of your data services.

Document version: 1.1.0

USER GUIDE 1

django-data-watcher

2 USER GUIDE

CHAPTER

ONE

INSTALLATION

Django Data Watcher can be installed from PyPI with tools like pip:

pip install django-watcher

1.1 Requirements

Django Data Watcher is tested against all supported versions of Python ,

• Python: 3.6, 3.7, 3.8, 3.9

3

django-data-watcher

4 Chapter 1. Installation

CHAPTER

TWO

GETTING STARTED

Here you will understand how to use our WatcherMixins to decorate your Django Models and take advantage of the
Hooks

1. Extend a base mixin, implementing the desired hook. check Create Your Watcher and Available Mixins.

2. Decorate you Model with watched decorator, check Decorate Your Model

2.1 The Hooks

Every basic data operation in Django can trigger a hook (Except read operations). And we have these hooks availables:

• pre_create called by: CreateWatcherMixin, and SaveWatcherMixin

• pre_update called by: UpdateWatcherMixin, and SaveWatcherMixin

• pre_save called by: SaveWatcherMixin

• pre_delete called by: DeleteWatcherMixin

• post_create called by: CreateWatcherMixin, and SaveWatcherMixin

• post_update called by: UpdateWatcherMixin, and SaveWatcherMixin

• post_save called by: SaveWatcherMixin

• post_delete called by: DeleteWatcherMixin

Each hook is a classmethod, it will always have the target param, update and create hooks will also have the
meta_params param.

2.1.1 Target

The Target represents the objects afected by the current operation.
It can be a already filtered QuerySet or a List which instances.
Each hook signature will specify the type of the target, but you can infer thinking like: “Is possible to have a queryset
here?” in pre_create hooks is not so you will receive a list of objects.
To check hook signature go to the specific mixin.

5

django-data-watcher

2.1.2 MetaParams

The Metaparams is a TypedDict which will inform you about the trigger of the current operation:

source: str # "queryset" or "instance"
operation_params: dict # is the kwargs of the trigger operation
instance_ref: optional[models.Model] # in instance operations triggered by instances it␣
→˓will bring the reference to the instance that the operation was called

2.2 Create Your Watcher

The Watcher class is the core of our project, on that you will coordinate the hooks of your model.

We do give 3 basic mixins (DeleteWatcherMixin, CreateWatcherMixin, UpdateWatcherMixin) which will control your
data flow.

Also, exists a 4th mixin that is a mix up of Create and Update mixins: SaveWatcherMixin.

These mixins will call the hooks in the approprieted order together with the desired operation everything inside a
transaction, and it will Rollback if something goes wrong.

How to extend a basic mixins:

my_app.watchers.py

from __future__ import annotation

from typing import TYPE_CHECKING, List

from django_watcher.mixins import CreateWatcherMixin, DeleteWatcherMixin

from .tasks import send_deletion_email

if TYPE_CHECKING:
from .models import MyModel

class MyModelWatcher(CreateWatcherMixin, DeleteWatcherMixin):
@classmethod
def post_delete(cls, undeleted_instances: List[MyModel]):

send_deletetion_email(undeleted_instances)

@classmethod
def pre_create(cls, target: List[MyModel], meta_params: dict):

do transformation, call functions, whatever you feel necessary

Usage of type hints is optional:

my_app.watchers.py

from django_watcher.mixins import CreateWatcherMixin, DeleteWatcherMixin

from .tasks import send_deletion_email

(continues on next page)

6 Chapter 2. Getting Started

django-data-watcher

(continued from previous page)

class MyModelWatcher(CreateWatcherMixin, DeleteWatcherMixin):
@classmethod
def post_delete(cls, undeleted_instances):

send_deletetion_email(undeleted_instances)

@classmethod
def pre_create(cls, target, meta_params):

do transformation, call functions, whatever you feel necessary

This section is only to show how easy is to use, but you can dive deep on the next section Available Mixins to check
what are the available parameters of the hooks.

2.3 Available Mixins

2.3.1 DeleteWatcherMixin

The DeleteWatcherMixin extends our AbstractWatcher has the following hooks:

@classmethod
def pre_delete(cls, target: models.QuerySet) -> None:

...

@classmethod
def post_delete(cls, undeleted_instances: List[D]) -> None:

...

2.3.2 CreateWatcherMixin

The CreateWatcherMixin extends our AbstractWatcher has the following hooks:

@classmethod
def pre_create(cls, target: List['CreatedModel'], meta_params: MetaParams) -> None:

...

@classmethod
def post_create(cls, target: models.QuerySet, meta_params: MetaParams) -> None:

...

To understand what is MetaParams, click on the link.

2.3. Available Mixins 7

django-data-watcher

2.3.3 UpdateWatcherMixin

The UpdateWatcherMixin extends our AbstractWatcher and has the following hooks:

@classmethod
def pre_update(cls, target: models.QuerySet, meta_params: MetaParams) -> None:

...

@classmethod
def post_update(cls, target: models.QuerySet, meta_params: MetaParams) -> None:

...

To understand what is MetaParams, click on the link.

2.3.4 SaveWatcherMixin

The SaveWatcherMixin extends CreateWatcherMixin and UpdateWatcherMixin has the same hooks of it supers and:

@classmethod
def pre_save(cls, target: Union[List['CreatedModel'], models.QuerySet], meta_params:␣
→˓MetaParams) -> None:
pass

@classmethod
def post_save(cls, target: models.QuerySet, meta_params: MetaParams) -> None:

pass

pre_save and post_save hooks will always run.

Create hooks order:

1. pre_save

2. pre_create

3. create

4. post_create

5. post_save

Update hooks order:

1. pre_save

2. pre_update

3. update

4. post_update

5. post_save

To understand what is MetaParams, click on the link.

8 Chapter 2. Getting Started

django-data-watcher

2.4 Decorate Your Model

Setting the Watcher on the model:

You will always decorate your model
from django_watcher.decorators import watched

Approach #1 - Import the watcher locally
from my_app.whatchers import MyWatcher

@watched(MyWatcher)
class MyModel(models.Model):

...

Approach #2 - Give a custom path
@watched('my_app.services.watchers.MyWatcher')
class MyModel(models.Model):

...

Approach #3 - Give de module name + watcher name if is inside a `watchers.py` of the␣
→˓same django app
@watched('my_app.MyWatcher')
class MyModel(models.Model):

...

2.4.1 Using others than default django managers

Also if you have other managers (aside from objects) you can declarate it, on the seccond param of the watched deco-
rator, default value is [‘objects’]:

from django_watcher.decorators import watched

@watched('my_app.MyWatcher', ['objects', 'deleted_objects'])
class MyModel(models.Model):

...

2.4. Decorate Your Model 9

django-data-watcher

10 Chapter 2. Getting Started

CHAPTER

THREE

TUTORIAL

3.1 Migrating from Django Signals

Let’s you have models and signals like this:

events.models.py

class Event(models.Model):
name = models.CharField(max_length=255)
starts_at = models.DateTimeField()
duration = models.DurationField(default=timedelta(hours=1))

@receiver(pre_save, sender=Event)
def event_pre_save(sender, instance, **kwargs):

if not instance.id:
return

old_instance = Event.objects.get(id=instance.id)
if old_instance.starts_at != instance.starts_at or old_instance.duration != ␣

→˓instance.duration:
event_tasks.resync_event_calendars.delay(event_id=instance.id)

class Enrollment(models.Model):

PARTICIPANT = 'participant'
SPEETCHER = 'speetcher'
ORGANIZER = 'organizer'
CO_ORGANIZER = 'co_organizer'

ROLE_CHOICES = [
(PARTICIPANT, 'Participant'),
(SPEETCHER, 'Speetcher'),
(ORGANIZER, 'Organizer'),
(CO_ORGANIZER, 'Co-Organizer'),

]

role = models.CharField(ax_length=255, choices=ROLE_CHOICES)

(continues on next page)

11

django-data-watcher

(continued from previous page)

user = models.ForeignKey("users.User", models.CASCADE, related_name="enrollments")
event = models.ForeignKey("events.Event", models.CASCADE, related_name="enrollments")

@receiver(post_delete, sender=Enrollment)
def enrollment_post_save(sender, instance, **kwargs):

event_tasks.remove_enrollment_calendar.delay(enrollment_id=instance.id)

Transforming it to a Watcher:

events.watchers.py

from django_watchers.mixins import UpdateWatcherMixin, DeleteWatcherMixin

EventWatcher(UpdateWatcherMixin):
@classmethod
def pre_update(cls, target, meta_params):

source = meta_params.get('source')

if source == 'queryset':
operation_params = meta_params.get('operation_params')
resync = 'starts_at' in operation_params or 'duration' in operation_params

else:
old_instance = target.first()
instance = meta_params.get('instance_ref')
resync = old_instance.starts_at != instance.starts_at or old_instance.

→˓duration != instance.duration:

if resync:
event_tasks.resync_event_calendars.delay(event_ids=target.values_list('id'))

EnrollmentWatcher(DeleteWatcherMixin):
@classmethod
def post_delete(cls, target):

event_tasks.remove_enrollment_calendar.delay(enrollment_ids=[enrollment.id for␣
→˓enrollment in target])

events.models.py

from django_watcher.decorators import watched

from .watchers import EventWatcher, EnrollmentWatcher

@watched(EventWatcher)
class Event(models.Model):

name = models.CharField(max_length=255)
starts_at = models.DateTimeField()
duration = models.DurationField(default=timedelta(hours=1))

(continues on next page)

12 Chapter 3. Tutorial

django-data-watcher

(continued from previous page)

@watched(EnrollmentWatcher)
class Enrollment(models.Model):

PARTICIPANT = 'participant'
SPEETCHER = 'speetcher'
ORGANIZER = 'organizer'
CO_ORGANIZER = 'co_organizer'

ROLE_CHOICES = [
(PARTICIPANT, 'Participant'),
(SPEETCHER, 'Speetcher'),
(ORGANIZER, 'Organizer'),
(CO_ORGANIZER, 'Co-Organizer'),

]

role = models.CharField(ax_length=255, choices=ROLE_CHOICES)

user = models.ForeignKey("users.User", models.CASCADE, related_name="enrollments")
event = models.ForeignKey("events.Event", models.CASCADE, related_name="enrollments")

3.1. Migrating from Django Signals 13

django-data-watcher

14 Chapter 3. Tutorial

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

15

	Installation
	Requirements

	Getting Started
	The Hooks
	Target
	MetaParams

	Create Your Watcher
	Available Mixins
	DeleteWatcherMixin
	CreateWatcherMixin
	UpdateWatcherMixin
	SaveWatcherMixin

	Decorate Your Model
	Using others than default django managers

	Tutorial
	Migrating from Django Signals

	Indices and tables

