

Welcome to django-data-watcher’s documentation!

Django Data Watcher is a library that will make easier to create/mantain side-effects of data operations in your django models.

It tries to fix some of Django Signals’ problems, being reusable, giving visibility of the side-effects of doing data operations in a specific model, and also if some hook is triggered by a queryset operation it runs only once, giving you responsability of dealing with the queryset instead running once for each affected instance.

It’s very practical to use and you can improve the readbility and performance of your data services.

Document version:
1.1.0

User Guide

	Installation
	Requirements

	Getting Started
	The Hooks
	Target

	MetaParams

	Create Your Watcher

	Available Mixins
	DeleteWatcherMixin

	CreateWatcherMixin

	UpdateWatcherMixin

	SaveWatcherMixin

	Decorate Your Model
	Using others than default django managers

	Tutorial
	Migrating from Django Signals

Indices and tables

	Index

	Module Index

	Search Page

Installation

Django Data Watcher can be installed from PyPI with tools like pip:

pip install django-watcher

Requirements

Django Data Watcher is tested against all supported versions of Python ,

	Python: 3.6, 3.7, 3.8, 3.9

Getting Started

Here you will understand how to use our WatcherMixins to decorate your Django Models and take advantage of the Hooks

	Extend a base mixin, implementing the desired hook. check Create Your Watcher and Available Mixins.

	Decorate you Model with watched decorator, check Decorate Your Model

The Hooks

Every basic data operation in Django can trigger a hook (Except read operations).
And we have these hooks availables:

	pre_create called by: CreateWatcherMixin, and SaveWatcherMixin

	pre_update called by: UpdateWatcherMixin, and SaveWatcherMixin

	pre_save called by: SaveWatcherMixin

	pre_delete called by: DeleteWatcherMixin

	post_create called by: CreateWatcherMixin, and SaveWatcherMixin

	post_update called by: UpdateWatcherMixin, and SaveWatcherMixin

	post_save called by: SaveWatcherMixin

	post_delete called by: DeleteWatcherMixin

Each hook is a classmethod, it will always have the target param, update and create hooks will also have the meta_params param.

Target

The Target represents the objects afected by the current operation.

It can be a already filtered QuerySet or a List which instances.

Each hook signature will specify the type of the target, but you can infer thinking like: “Is possible to have a queryset here?” in pre_create hooks is not so you will receive a list of objects.

To check hook signature go to the specific mixin.

MetaParams

The Metaparams is a TypedDict which will inform you about the trigger of the current operation:

source: str # "queryset" or "instance"
operation_params: dict # is the kwargs of the trigger operation
instance_ref: optional[models.Model] # in instance operations triggered by instances it will bring the reference to the instance that the operation was called

Create Your Watcher

The Watcher class is the core of our project, on that you will coordinate the hooks of your model.

We do give 3 basic mixins (DeleteWatcherMixin, CreateWatcherMixin, UpdateWatcherMixin) which will control your data flow.

Also, exists a 4th mixin that is a mix up of Create and Update mixins: SaveWatcherMixin.

These mixins will call the hooks in the approprieted order together with the desired operation everything inside a transaction, and it will Rollback if something goes wrong.

How to extend a basic mixins:

my_app.watchers.py

from __future__ import annotation

from typing import TYPE_CHECKING, List

from django_watcher.mixins import CreateWatcherMixin, DeleteWatcherMixin

from .tasks import send_deletion_email

if TYPE_CHECKING:
 from .models import MyModel

class MyModelWatcher(CreateWatcherMixin, DeleteWatcherMixin):
 @classmethod
 def post_delete(cls, undeleted_instances: List[MyModel]):
 send_deletetion_email(undeleted_instances)

 @classmethod
 def pre_create(cls, target: List[MyModel], meta_params: dict):
 # do transformation, call functions, whatever you feel necessary

Usage of type hints is optional:

my_app.watchers.py

from django_watcher.mixins import CreateWatcherMixin, DeleteWatcherMixin

from .tasks import send_deletion_email

class MyModelWatcher(CreateWatcherMixin, DeleteWatcherMixin):
 @classmethod
 def post_delete(cls, undeleted_instances):
 send_deletetion_email(undeleted_instances)

 @classmethod
 def pre_create(cls, target, meta_params):
 # do transformation, call functions, whatever you feel necessary

This section is only to show how easy is to use, but you can dive deep on the next section Available Mixins to check what are the available parameters of the hooks.

Available Mixins

DeleteWatcherMixin

The DeleteWatcherMixin extends our AbstractWatcher has the following hooks:

@classmethod
def pre_delete(cls, target: models.QuerySet) -> None:
 ...

@classmethod
def post_delete(cls, undeleted_instances: List[D]) -> None:
 ...

CreateWatcherMixin

The CreateWatcherMixin extends our AbstractWatcher has the following hooks:

@classmethod
def pre_create(cls, target: List['CreatedModel'], meta_params: MetaParams) -> None:
 ...

@classmethod
def post_create(cls, target: models.QuerySet, meta_params: MetaParams) -> None:
 ...

To understand what is MetaParams, click on the link.

UpdateWatcherMixin

The UpdateWatcherMixin extends our AbstractWatcher and has the following hooks:

@classmethod
def pre_update(cls, target: models.QuerySet, meta_params: MetaParams) -> None:
 ...

@classmethod
def post_update(cls, target: models.QuerySet, meta_params: MetaParams) -> None:
 ...

To understand what is MetaParams, click on the link.

SaveWatcherMixin

The SaveWatcherMixin extends CreateWatcherMixin and UpdateWatcherMixin has the same hooks of it supers and:

@classmethod
def pre_save(cls, target: Union[List['CreatedModel'], models.QuerySet], meta_params: MetaParams) -> None:
 pass

@classmethod
def post_save(cls, target: models.QuerySet, meta_params: MetaParams) -> None:
 pass

pre_save and post_save hooks will always run.

Create hooks order:

	pre_save

	pre_create

	create

	post_create

	post_save

Update hooks order:

	pre_save

	pre_update

	update

	post_update

	post_save

To understand what is MetaParams, click on the link.

Decorate Your Model

Setting the Watcher on the model:

You will always decorate your model
from django_watcher.decorators import watched

Approach #1 - Import the watcher locally
from my_app.whatchers import MyWatcher

@watched(MyWatcher)
class MyModel(models.Model):
 ...

Approach #2 - Give a custom path
@watched('my_app.services.watchers.MyWatcher')
class MyModel(models.Model):
 ...

Approach #3 - Give de module name + watcher name if is inside a `watchers.py` of the same django app
@watched('my_app.MyWatcher')
class MyModel(models.Model):
 ...

Using others than default django managers

Also if you have other managers (aside from objects) you can declarate it, on the seccond param of the watched decorator, default value is [‘objects’]:

from django_watcher.decorators import watched

@watched('my_app.MyWatcher', ['objects', 'deleted_objects'])
class MyModel(models.Model):
 ...

Tutorial

Migrating from Django Signals

Let’s you have models and signals like this:

events.models.py

class Event(models.Model):
 name = models.CharField(max_length=255)
 starts_at = models.DateTimeField()
 duration = models.DurationField(default=timedelta(hours=1))

@receiver(pre_save, sender=Event)
def event_pre_save(sender, instance, **kwargs):
 if not instance.id:
 return

 old_instance = Event.objects.get(id=instance.id)
 if old_instance.starts_at != instance.starts_at or old_instance.duration != instance.duration:
 event_tasks.resync_event_calendars.delay(event_id=instance.id)

class Enrollment(models.Model):

 PARTICIPANT = 'participant'
 SPEETCHER = 'speetcher'
 ORGANIZER = 'organizer'
 CO_ORGANIZER = 'co_organizer'

 ROLE_CHOICES = [
 (PARTICIPANT, 'Participant'),
 (SPEETCHER, 'Speetcher'),
 (ORGANIZER, 'Organizer'),
 (CO_ORGANIZER, 'Co-Organizer'),
]

 role = models.CharField(ax_length=255, choices=ROLE_CHOICES)

 user = models.ForeignKey("users.User", models.CASCADE, related_name="enrollments")
 event = models.ForeignKey("events.Event", models.CASCADE, related_name="enrollments")

@receiver(post_delete, sender=Enrollment)
def enrollment_post_save(sender, instance, **kwargs):
 event_tasks.remove_enrollment_calendar.delay(enrollment_id=instance.id)

Transforming it to a Watcher:

events.watchers.py

from django_watchers.mixins import UpdateWatcherMixin, DeleteWatcherMixin

EventWatcher(UpdateWatcherMixin):
 @classmethod
 def pre_update(cls, target, meta_params):
 source = meta_params.get('source')

 if source == 'queryset':
 operation_params = meta_params.get('operation_params')
 resync = 'starts_at' in operation_params or 'duration' in operation_params
 else:
 old_instance = target.first()
 instance = meta_params.get('instance_ref')
 resync = old_instance.starts_at != instance.starts_at or old_instance.duration != instance.duration:

 if resync:
 event_tasks.resync_event_calendars.delay(event_ids=target.values_list('id'))

EnrollmentWatcher(DeleteWatcherMixin):
 @classmethod
 def post_delete(cls, target):
 event_tasks.remove_enrollment_calendar.delay(enrollment_ids=[enrollment.id for enrollment in target])

events.models.py

from django_watcher.decorators import watched

from .watchers import EventWatcher, EnrollmentWatcher

@watched(EventWatcher)
class Event(models.Model):
 name = models.CharField(max_length=255)
 starts_at = models.DateTimeField()
 duration = models.DurationField(default=timedelta(hours=1))

@watched(EnrollmentWatcher)
class Enrollment(models.Model):

 PARTICIPANT = 'participant'
 SPEETCHER = 'speetcher'
 ORGANIZER = 'organizer'
 CO_ORGANIZER = 'co_organizer'

 ROLE_CHOICES = [
 (PARTICIPANT, 'Participant'),
 (SPEETCHER, 'Speetcher'),
 (ORGANIZER, 'Organizer'),
 (CO_ORGANIZER, 'Co-Organizer'),
]

 role = models.CharField(ax_length=255, choices=ROLE_CHOICES)

 user = models.ForeignKey("users.User", models.CASCADE, related_name="enrollments")
 event = models.ForeignKey("events.Event", models.CASCADE, related_name="enrollments")

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to django-data-watcher’s documentation!

 		
 Installation

 		
 Requirements

 		
 Getting Started

 		
 The Hooks

 		
 Target

 		
 MetaParams

 		
 Create Your Watcher

 		
 Available Mixins

 		
 DeleteWatcherMixin

 		
 CreateWatcherMixin

 		
 UpdateWatcherMixin

 		
 SaveWatcherMixin

 		
 Decorate Your Model

 		
 Using others than default django managers

 		
 Tutorial

 		
 Migrating from Django Signals

_static/file.png

_static/minus.png

_static/plus.png

